Mathematics for Machine Learning

Mathematics for Machine Learning

Description

The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.

Similar Books

ISBN 10: 1492032646
ISBN 13: 9781492032649

22 Oct 2019
Aurelien Geron

ISBN 10: 1107149894
ISBN 13: 9781107149892

15 Feb 2019
Bradley Efron

ISBN 10: 1491989386
ISBN 13: 9781491989388

01 May 2018
Chris Albon

ISBN 10: 1999579518
ISBN 13: 9781999579517

11 Jan 2019
Andriy Burkov

ISBN 10: 149207294X
ISBN 13: 9781492072942

01 Jul 2020
Peter Bruce

ISBN 10: 0262042843
ISBN 13: 9780262042840

01 Oct 2019
Jacob Eisenstein

ISBN 10: 0262035618
ISBN 13: 9780262035613

18 Apr 2017
Ian Goodfellow

ISBN 10: 0486409163
ISBN 13: 9780486409160

28 Mar 2003
A. D. Aleksandrov

ISBN 10: 0241407621
ISBN 13: 9780241407622

02 Mar 2021
Jordan B. Peterson

ISBN 10: 0596516495
ISBN 13: 9780596516499

17 Jul 2009
Steven Bird

ISBN 10: 1119666945
ISBN 13: 9781119666943

14 Jun 2020
Brad Williams

ISBN 10: 1491981652
ISBN 13: 9781491981658

18 Jul 2017
Julia Silge